Benchtop test quickly identifies extremely impact-resistant materials
By firing microparticles at supersonic speeds, MIT engineers can test the resilience of various metamaterials made from structures as small as a red blood cell. Pictured are four video stills of a microparticle hitting a structure made of metamaterials. Credit: Massachusetts Institute of Technology

An intricate, honeycomb-like structure of struts and beams could withstand a supersonic impact better than a solid slab of the same material. What's more, the specific structure matters, with some being more resilient to impacts than others.

That's what MIT engineers are finding in experiments with microscopic metamaterials—materials that are intentionally printed, assembled, or otherwise engineered with microscopic architectures that give the overall material exceptional properties.

In a study appearing today in the Proceedings of the National Academy of Sciences, the engineers report on a new way to quickly test an array of metamaterial architectures and their resilience to supersonic impacts.

In their experiments, the team suspended tiny printed metamaterial lattices between microscopic support structures, then fired even tinier particles at the materials, at . With , the team then captured images of each impact and its aftermath, with nanosecond precision.

Their work has identified a few metamaterial architectures that are more resilient to supersonic impacts compared to their entirely solid, nonarchitected counterparts. The researchers say the results they observed at the can be extended to comparable macroscale impacts, to predict how new material structures across length scales will withstand impacts in the real world.

"What we're learning is, the microstructure of your material matters, even with high-rate deformation," says study author Carlos Portela, the Brit and Alex d'Arbeloff Career Development Professor in Mechanical Engineering at MIT. "We want to identify impact-resistant structures that can be made into coatings or panels for spacecraft, vehicles, helmets, and anything that needs to be lightweight and protected."

Other authors on the study include first author and MIT graduate student Thomas Butruille, and Joshua Crone of DEVCOM Army Research Laboratory.

MIT engineers have captured video of a microparticle being fired through a precisely architected metamaterial, measuring thinner than the width of a human hair. Credit: Massachusetts Institute of Technology

Pure impact

The team's new high-velocity experiments build off their previous work, in which the engineers tested the resilience of an ultralight, carbon-based material. That material, which was thinner than the width of a human hair, was made from tiny struts and beams of carbon, which the team printed and placed on a glass slide. They then fired microparticles toward the material, at velocities exceeding the speed of sound.

Those supersonic experiments revealed that the microstructured material withstood the high-velocity impacts, sometimes deflecting the microparticles and other times capturing them.

"But there were many questions we couldn't answer because we were testing the materials on a substrate, which may have affected their behavior," Portela says.

In their new study, the researchers developed a way to test freestanding metamaterials, to observe how the materials withstand impacts purely on their own, without a backing or supporting substrate.

In their current setup, the researchers suspend a metamaterial of interest between two microscopic pillars made from the same base material. Depending on the dimensions of the metamaterial being tested, the researchers calculate how far apart the pillars must be in order to support the material at either end while allowing the material to respond to any impacts, without any influence from the pillars themselves.

"This way, we ensure that we're measuring the material property and not the structural property," Portela says.

Once the team settled on the pillar support design, they moved on to test a variety of metamaterial architectures. For each architecture, the researchers first printed the supporting pillars on a small silicon chip, then continued printing the metamaterial as a suspended layer between the pillars.

"We can print and test hundreds of these structures on a single chip," Portela says.

More information: Decoupling particle-impact dissipation mechanisms in 3D architected materials, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2313962121. doi.org/10.1073/pnas.2313962121

This story is republished courtesy of MIT News (web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Citation: Benchtop test quickly identifies extremely impact-resistant materials (2024, January 29) retrieved 29 January 2024 from https://techxplore.com/news/2024-01-benchtop-quickly-extremely-impact-resistant.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.